ELLIPTIC INTEGRABLE SYSTEMS q-difference shift for van Diejen’s BCn type Jackson integral arising from ‘elementary’ symmetric polynomials

نویسنده

  • Masahiko ITO
چکیده

We study a q-difference equation of a BCn type Jackson integral, which is a multiple q-series generalized from a q-analogue of Selberg’s integral. The equation is characterized by some new symmetric polynomials defined via the symplectic Schur functions. As an application of it, we give another proof of a product formula for the BCn type Jackson integral, which is equivalent to the so-called q-Macdonald-Morris identity for the root system BCn first obtained by Gustafson and van Diejen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BCn-symmetric polynomials

We consider two important families of BCn-symmetric polynomials, namely Okounkov’s interpolation polynomials and Koornwinder’s orthogonal polynomials. We give a family of difference equations satisfied by the former, as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Transformations of elliptic hypergeometric integrals

We prove a pair of transformations relating elliptic hypergeometric integrals of different dimensions, corresponding to the root systems BCn and An; as a special case, we recover some integral identities conjectured by van Diejen and Spiridonov. For BCn, we also consider their “Type II” integral. Their proof of that integral, together with our transformation, gives rise to pairs of adjoint inte...

متن کامل

BCn-symmetric abelian functions

We construct a family of BCn-symmetric biorthogonal abelian functions generalizing Koornwinder’s orthogonal polynomials, and prove a number of their properties, most notably analogues of Macdonald’s conjectures. The construction is based on a direct construction for a special case generalizing Okounkov’s interpolation polynomials. We show that these interpolation functions satisfy a collection ...

متن کامل

AN ELLIPTIC BCn BAILEY LEMMA AND ROGERS–RAMANUJAN IDENTITIES ASSOCIATED TO ROOT SYSTEMS

(1.2) (a; q)α := (a; q)∞ (aqα; q)∞ in terms of (a; q)∞ := ∏∞ i=0(1− aq ). These identities have a very rich history. Many important figures in mathematics had contributed to the development of these identities starting with Rogers [25] who first proved them in 1894, and Ramanujan [17] whose involvement made Rogers’ unnoticed work popular. Others contributed by simplifying existing proofs, sugge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005